Hydrogen Peroxide Gas-Plasma Sterilization

Advantages & benefits of a proven method for device sterilization

Roy E. Morgan, PE, PMP

V.P. Engineering / NPI Eagle Medical, Inc.

Jody Birks

Regulatory And Quality Assurance Mgr. Eagle Medical, Inc.

Nick Ontiveros

GSM/Sterilization Supervisor Eagle Medical, Inc.

What is Hydrogen Peroxide Gas-Plasma (HPGP) Sterilization?

• HPGP is a *low-temperature* hydrogen peroxide gas plasma technology, designed to sterilize a wide range of instruments without instrument damage associated with other established sterilization methods.

Sterilization of New Devices			
Orthopedic Implants,	Rigid Scopes,		
Pre-Filled Syringes,	Cameras,		
Accessory Cables,	Electronics,		
Batteries,	Ablation Devices		
Intraocular Implants	Screws, Pins		
Among Many Others			

The Basic HPGP Cycle...

- Employs the cidal / oxidative properties of vapor Hydrogen Peroxide (H₂O₂) to penetrate and kill resident bioburden.
- Applies repetitive injections as determined through Cycle Validation, and
- Plasma formation to dramatically reduce H₂O₂ residuals and cycle times for sterilization loads.

Post Conditioning

HPGP Sterilization process

- Three phases constitute a sterilization block; the system can be programed to perform many blocks without equipment limitations. The number of blocks are a function of obtaining the adequate Sterilization Assurance Level (SAL) 10^{-6.} in half cycle conditions.
- Additional Plasma and Vent Phases are utilized to condition the load
 - Plasma Phase: Plasma is introduced to break down the H₂O₂ into free radicals, afterward these active radicals recombine into H₂O and O₂.
 - Vent Phase where the chamber in "vented" allowing clean filtered air into the chamber.
- Pre and post conditioning are also part of the cycle to prepare the load, devices, before and after the sterilization cycle.
 - Pre Conditioning consists in warming the load to optimum temperature condition ~40°C(normally 30 to 60 minutes).
 - Post Conditioning Phase consists in removing H2O2 residual via Vacuum, Plasma and Vent Phase (normally less than 15 minutes)

HPGP Sterilization process (cont.)

A Historical Overview of HPGP, An Established Technique:

- Originally began in the food processing industry, Cir. 1975 as diluted fluid sometimes combined with UV-irradiation, or as a vapor without plasma activation^{1, 2}
 - Among the first U.S. Patents for HPG (#4,169,123) was awarded to the Moore-Perk Corporation of Indianapolis, Indiana on September 25, 1979.
- Johnson and Johnson applied the Plasma Innovation to HP-Vapor in 1987 and first Field tested the device in the late 1980's. J&J was awarded Patent #4,943,414, on July 24, 1990.
 - More rapidly and effective removal of H_2O_2 residuals than vapor only systems
- By the early 2000's HPGP was becoming an accepted form of sterilization and by 2016, achieved FDA acceptance as a "established" sterilization method under Guidance Document;
 - "Submission and Review of Sterility Information in Premarket Notification (510(k)) Submissions for Devices Labeled as Sterile", Category-B.

1. Toledo, R. T. 1975. Chemical sterilants for aseptic packaging. Food Technol. 29(5):102-112.;

2. Antibacterial Effects of Hydrogen Peroxide and Methods for Its Detection and Quantitation, Benjamin j. Juven* and Merle D. Pierson Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, US *Journal of Food Protection, Vol.* 59, *No.* 11, 1996,

Why Consider HPGP as Your Primary SterilizationMethod?Risk vs. Reward(s)

Method	Risks	User/Oper.	Environment	Device Mat'ls.	Patient
HPGP	Hazardous Residuals	Very Low	None	Low	None
	High Temperatures	Low	Low	Low	N/A
	Cycle Times	Short	N/A	Low	N/A
	Validation Time	8-10wks.	N/A	N/A	N/A
	Validation Cost	\$25k-\$35k	N/A	High	N/A
EtO Gas	Hazardous Residuals	High	High	Med	High
	High Temperatures	Low	Low	Low	Low
	Cycle Times	Long	N/A	Med/Long	N/A
	Validation Time	12-16wks.	N/A	N/A	N/A
	Validation Cost	\$50k-\$70k	N/A	High	N/A

Copyright, Eagle Medical, Inc. 2018 www.eaglemed.com

Comparative Benefits HPGP vs. EtO, Under An Established Sterilization Method...

Literature on Comparative Processing Time²

W.A. Rutala, D.J. Weber / American Journal of Infection Control 41 (2013) S2-S5

S3

Table 1

Methods for disinfection and sterilization of patient care items and environmental surfaces*

Process	Level of microbial inactivation	Method	Examples (with processing times)	Health care application (examples)
Sterilization	Destroys all microorganisms, including bacterial spores	High temperature Low temperature Liquid immersion	 Steam (~40 min), dry heat (1-6 hr depending on temperature) Ethylene oxide gas (~15 hr), hydrogen peroxide gas plasma (28-52 min), ozone (~4 hr), hydrogen peroxide vapor (55 min) Chemical sterilants[†]: >2% glut (~10 hr); 1.12% glut with 1.93% phenol (12 hr); 7.35% HP with 0.23% PA (3 hr); 8.3% HP with 7.0% PA (5 hr); 7.5% HP (6 hr); 1.0% HP with 0.08% PA (8 hr); ≥0.2% PA (12 min at 50°C-56°C) 	Heat-tolerant critical (surgical instruments) and semicritical patient care items Heat-sensitive critical and semicritical patient care items Heat-sensitive critical and semicritical patient care items that can be immersed

1. Disinfection and sterilization: An overview, William A. Rutala PhD, MPHa,b,*, David J. Weber MD, MPH, American Journal of Infection Control 41 (2013) S2-S5.

2. For Health-Care industry.

Copyright, Eagle Medical, Inc. 2018 www.eaglemed.com

HPGP Usage Today

- More than 20,000 sterilizer installed and operating world wide in Health Care facilities
- In the Industrial setting used in :
 - Orthopedic
 - Intra Ocular Lenses, IOL
 - Pre-Filled Syringes
 - Facial Implants
 - Laser Instruments
 - Neuro Stimulator, Pace Maker
 - Ablation Devices
 - Life Science, Packaging
 - Electronics, transponder with batteries
 - Cochlear Implant
 - Umbilical Clamps
 - GMP lab instrumentation

Key Advantages of H₂O₂ Gas Plasma

Less harsh than other forms of sterilization

- Non-Volatile Memory, electronics friendly
 - Enables "Smart" / "Calibratable" Disposables;
 - Either you pay for hardened electronics OR
 - Use a compatible sterilization technology
- Low-temperature, Low humidity process
- Li-lon battery compatibility
 - Enables "wireless" hand-held battery operated devices.
- Pre-filled syringe and ampule compatible (non-penetrating of enclosure walls & stopper)
- UHMW Polymer Device Compatibility

Copyright, Eagle Medical, Inc. 2018

Device Types That Are Amenable To H₂O₂ **Sterilization**

- Potential for software driven electromedical devices with:
 - Calibration at connection
 - Auto-ID, Startup Programming for disposables
 - Self-Powered rechargeable / disposable battery operated types
- Future Sterilization Applications:
 - Additively manufactured custom devices (3-D printed, DMLS, FDM, SLS)
- Eagle Medical recommends for instances where customers have any questions regarding residuals of post-sterilized devices, using the Nelson toxicology specialists for complete analysis.

Some Limitations of the HPGP Process

- NOT Compatible with:
 - Liquids
 - Powders
 - Cellulosic materials
 - Long-lumens (~0.25m or longer, no dead-ends)

Typical lumen limits with HPGP

Devices Compatibility

Most Compatible		Least Compatible
Orthopedic Implants (UHMWPE and Metals)	Drug Delivery Systems	Long Catheters, Venous and arterial
Pre-filled syringes and containers	Bone Screws (PLA)	Bone Allograft (natural)
IOL(Silicone, PMMA)	IOL (Acrylics)	Custom IV sets
Biopsy Devices	Mechanical heart valves	Collagen
Neuro Stimulator	Arthroscopic devices	Aortic Stents
Electronics, Batteries, Cables	Hydrogels (dehydrated)	Filters
Electro Physiology Catheters		IV catheters
Soft Tissue Patches (synthetic, PP, PTFE)		Bioabsorbable Polymer
Fiber Optics Lasers		
Doppler Probes		
Spinal Fixation Devices		
Endoscopic instruments		
Silicone Implants		

Material Compatibility

Most Compatible		Least Compatible
PLASTIC and ELASTOMERTER		PLASTIC and ELASTOMERTER/other
UHMWPE/HDPE/LDPE/PE	Polymethylmethacrylate (PMMA)	Cellulosic (Cotton/linen/wood products)
Polypropylene (PP)	Polyacetal	Protein (wool/silk/human skin)
Silicone, Medical Grade	Polylactic acid (PLA)	But acrylates
Polytetrafluoroethylene (PTFE, Teflon)	Acrylic/Acrylic adhesives	Collagen (depending on application)
Thermoplastic elastomer (TPE/Hytrel)	Polyurethane	Bioabsorbable polymer (Other than PLA, Polyglycolide PGA
Polyvinylchloride (PVC)	Sintered Glass (>Surface Area)	Natural Rubber (neoprene, santoprene)
Polycarbonate (PC)	Polyesters	Copper Large quantities)
Polysulfide (PSF)	Nylons	Brass (large quantities)
Polyethylene terephthalate glycol copolymer (PETG)	Hydrogels (dehydrated)	
Polystyrene (PS)	Carbon Fibr resin	
Polyetherether Ketone (PEEK)	Collagen (hemostat sponges)	
Polyetherimide		
ABS		
Butyl Rubber		

Material Compatibility (cont.)

Most Compatible
<u>Adhesives</u>
Epoxies (2-Part)
UV Curable Acrylics and Urethanes
Cyanoacrylates
<u>Metals/Non-Metals</u>
Ceramics
Glass
Stainless Steel (303,304,316)
Aluminum
Cobalt Chrome
Titanium

A Brief Survey of HPGP Materials & Residuals

- Materials Where Residuals are Typically NOT an Issue:
 - Polyethylene
 - Polypropylene
 - UHMW PE
 - UHMW PP
 - Stainless Steels (303, 304, 316, etc.)
 - Titanium and Ti-Alloys
 - ABS, ABS-Alloys (Polycarbonate)
 - Polycarbonate
 - LCPs
 - Ceramics
 - PEEK

- Materials Where Residuals May Need Careful Attention¹:
 - Polystyrene,
 - Polyurethane
 - Poly(methylmethacrylate) (PMMA)
 - Poly(2-hydroxyethylmethacrylate) (HEMA), fluorosilicone acrylate
 - Silicone
 - Mixtures of polyurethane and silicone

1. demonstrated strong cytotoxicity after standard aeration; Petr Kačer, Jiří Švrček, Kamila Syslová, Jiří Václavík, Dušan Pavlík, Jaroslav Červený and Marek Kuzma (2012), Vapor Phase Hydrogen Peroxide – Method for Decontamination of Surfaces and Working Areas from Organic Pollutants, Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, Dr. Tomasz Puzyn (Ed.), ISBN: 978-953-307-917-2, InTech.

New Frontiers in Device Mfg. & Sterilization

Now esoteric and one-of-a-kind designs are viable

For animal or human trials

To meet this need materials now have an H_2O_2 option.

Do you Have Issues with:

Blended polymers?

3-D printed parts in metal ceramic or polymer?

Adhesives with irradiation interactions or embrittlement?

Irradiation color shifting?

These effects are NOT likely as part of an H_2O_2 approach at SAL 10⁻⁶ sterility assurance.

3D-Printed DMLS / SLM Parts

Copyright, Eagle Medical, Inc. 2018

The Business case for Hydrogen Peroxide Gas Plasma

• Cost Effectiveness Vs. Ethylene Oxide & E-Beam/ γ

Sterilization Category	HPGP⁵	EtO ⁵	E-Beam / Gamma ⁶ 🗾
Cost / Load (\$ U.S.)	\$800	\$1,000	\$1,200
Cost to Validate (\$U.S.)	\$30,000	\$60,000	\$15,000
Sterility Maint. Costs (\$U.S.)	\$5,000	\$8,000	\$24,000
Net Difference vs. HPGP ¹	N/A	\$33,200	\$4,400
Typ. Load Turnaround Time (days)	2-3	7-10	3-5

Notes:

- **1**. Year-**1** analysis, your costs may vary, dependent on the total annual throughput and density of tote packaging.
- 2. H_2O_2 Approx. \$600 \$800/cycle, (assumes 100% density of an ~1m³ chamber)
- 3. Irradiation "lot-charge" / cycle \$1,200min., (assumes a 1m³ tote)
- 4. EtO "lot-charge" / cycle, \$800 \$1,200 (assumption is a 1m³ tote using a 3M type machine)
- 5. HPGP & EtO Sterility maintenance costs are annual.
- 6. Irradiation Sterility maintenance costs are quarterly.

Copyright, Eagle Medical, Inc. 2018 www.eaglemed.com

The Logical Choice for Today's Complex Devices

- Comparable cost-effectiveness with most current packaging solutions
- Compatible with EtO based materials & designs
- Turnkey transition by outsourced provider to HPGP technology
 - ✓ Governed by ISO14937
- ✓ FDA has recognized H_2O_2 gas plasma as a "Established" sterilization method.
- Provides low heat sterility cycles with no off-gassing concerns present with EtO.

When Speed to Market Matters Most... NPI

- New Product Introduction (NPI) Accelerator
 - Shortens the Sterilization
 Validation Timeline
 - (Speed to Submission)
 - Shortens the Clinical Trial turn-time for product delivery
 - (Speed through Clinicals)
 - Competitive Costs for Multiple Short-Run "Batch" Deliveries of Product
 - (Speed through Iterations)
- Provides an Economical Sterilization Means in Scale-up

Cycle Development (OQ)

- Cycle Development is specific to device and packaging combination
- Bls are set in the most difficult to inactivate location and throughout the load
- Device load configuration and packaging are fixed, identified and documented Packaging materials suitable for EtO are also suitable for HPGP
- All BIs must be inactivated under half cycle condition
- Bls usage must be the most resistant organism for the sterilization process
- Temperature profiling for homogeneous distribution
- Min Max pressure studies for max and min load conditions.

Against Most Resistant Organism

 Geobacillus stearothermophilus has been determined to be the most resistant organism to sterilization by the STERRAD® System (3, 4). This was demonstrated during the early development of the STERRAD System. Several independent researchers have independently demonstrated the resistance of G. stearothermophilus to hydrogen peroxide-based sterilization. Block's textbook on sterilization and disinfection lists B. stearothermophilus as the most resistant organism to sterilization by vapor phase hydrogen peroxide (2). The study by Kokubo et al (1) demonstrated that environmental isolates of several Bacillus species were much less resistant to sterilization by vapor phase hydrogen peroxide than commercially-prepared B. stearothermophilus spores. The European Pharmacopeaia lists B. stearothermophilus as the organism most resistant to sterilization by hydrogen peroxide. Work performed in Dr. Irving Pflug's laboratory demonstrates that vaporphase hydrogen peroxide is an effective means of destroying B. stearothermophilus spores. The D-value of B. stearothermophilus to hydrogen peroxide vapor at 6 mg/L is 1-2 seconds. When the concentration is cut in half (3 mg/L) the D-value is 12-15 seconds. Work performed by ASP demonstrates that the D-value in a STERRAD 100 System sized chamber at 1.5 mg H2O2 /L is 2-3 minutes. All these determinations were performed on non-absorptive substrates such as glass fiber or stainless steel.

Ref: STERRAD® 200 Sterilizer Technical Dossier¹

Notes:

1. STERRAD is a registered trademark of Advanced Sterilization Products.

Copyright, Eagle Medical, Inc. 2018

Copyright, Eagle Medical, Inc. 2018

Cycle Development Process

PQ Sterilization Validation

Inactivation Kinetics in HPGP

Test Conditions

- STERRAD 200 Sterilizer
- 1. Maximum Pkgd. Product Load
- 2. Half-cycle Conditions
- 3. Fractional Injections of Peroxide e.g. 10% to 70% of H_2O_2
- 4. Process Challenge Device gets qualified for use.
- 5. Three (3) reg. ¹/₂-Cycle with PCDs
- 6. Three (3) Full cycles with Tempmap and PCDs

% EOSL Hydrogen Peroxide Injection

Where Are These Sterilization Services?

HPGP, Validated	HPGP, Pipeline of	Cleanroom
Running Units	Units in FAT/PV	Capacity
7 – 200 GMP	6 – 200 GMP	2,000 Ft ² +
Sterilizers	Sterilizers	(Class-7)

- Additional HPGP 200 Sterilizers available for GMP capacity expansion.
- "Last Operation" Processes to Med-Device Manufacturers
 - Cleaning / Disinfection
 - Kitting / Assembly / Primary Packaging
 - Sterilization
 - Secondary packaging operations
 - Fulfillment
 - ISO13485 & 14937 Certified
 - FDA Registered

In Summary, HPGP Should Be At The Top of Your List For Sterilization Methods

- Reasons to look to HPGP as your FIRST choice in Sterilization
 - Sterility Assurance Capability
 - FDA Accepted "Established" Method
 - Where Speed/Time to Market are Paramount
 - NPI
 - Re-Validation / Introduction(s)
 - Clinicals
 - Where Delicate Device Construction or Electronics are Needed
 - Li-Ion Batteries, NVM, Etc.

Thank you for Listening

Copyright, Eagle Medical, Inc. 2018